管理员登录
   ·    科研动态
   ·    研究团队
   ·    学术报告
   ·    科研项目
   ·    科技成果
   ·    全国泛函微分方程会议

学术报告:Construction of vacuum initial data of the Einstein field equations - an introduction to conformal methods

发布时间:2019年05月06日 08:45      访问次数:

报告人:谢纳庆(复旦大学教授,博士生导师)

报告时间:2019年05月17日(周五)上午10:00

报告地点:理学院章辉楼442学术报告厅

联系人:何飞宏博士

报告摘要:

The geometric (physical) initial data is referred to as a triple (M,g,K) where (M,g) is a Riemannian 3-fold and K is a symmetric 2-tensor. They cannot be chosen freely; they must satisfy the constraints. Finding and studying solutions of the constraints are notoriously difficult. In this talk, we give a brief introduction to the standard conformal method, initiated by Lichnerowicz, and extended by Choquet-Bruhat and York. There is another way to construct vacuum initial data, referred to as 'the conformally covariant split' or, historically, 'Method B.' Amazingly, much less is mathematically known for this method. Joint with P.Mach and Y.Wang, we prove existence of solutions of the conformally covariant split system giving rise to non-constant mean curvature vacuum initial data for the Einstein field equations.

 

报告人简介:谢纳庆,现任复旦大学数学科学学院教授、博士生导师,理学博士(复旦大学,2007年),从事数学广义相对论的研究。

 

理学院

2019年05月6日

版权所有 © 集美大学理学院
地址:厦门市集美区银江路183号(校总部) 邮编:361021