科研服务
当前位置: 首页 > 科学研究 > 科研服务 > 正文

谱Turan问题系列学术报告

发布日期:2021年06月29日 17:31 作者:晏卫根 访问量:

Turan问题系列学术报告

 

报告人:宁博(南开大学,副教授)

报告一:Spectral radius of graphs

报告二:Spectral extremal graph theory

报告三:Two conjectures in spectral extremal graph theory

报告时间分别为:75日、7日与8日下午3:00

报告地点:章辉楼442(理学院学术报告厅)

联系人:晏卫根

 

报告一摘要: In this talk, we shall give a survey on spectral radius of graphs, including several famous bounds, for example, Stanley’s bound, Yuan Hong’s bound, Nikiforov’s bound, and Hong-Shu-Fang’s bound etc. We shall focus on the recent work of Tait and the method on counting closed walks. Many open problems are also mentioned.

 

报告二摘要:Spectral extremal graph theory

In this talk, we shall give a survey on the recent development of a beautiful branch of extremal graph theory, i.e., spectral extremal graph theory. We focus on the recent development on spectral conditions for triangles, cliques, 4-cycles, complete bipartite subgraphs and etc. Several longstanding conjectures are mentioned.

报告三摘要:Two conjectures in spectral extremal graph theory

In this talk, we mainly introduce two conjectures from spectral extremal graph theory. One is the Bollobas-Nikiforov Conjecture on a spectral inequality concerning the first largest and second largest eigenvalues and the clique number of a graph, and the other is the so-called Boots-Royle-Cao-Vince Conjecture which determines the maximum spectral radius of all planar graphs of order at least 9.

 

报告人简介:

宁博,西北工业大学博士,南洋理工大学访问学者。现为南开大学计算机学院副教授。曾入选天津大学北洋青年学者和天津市131创新型人才计划。研究兴趣是图论及其应用和密码学。在图论主流SCI期刊JCTBCombinatoricaCombin. Probab.Comput.J. Graph TheorySIAM J. Discrete Math.等发表论文40余篇。主持国家自然科学基金2项,参与国家自然科学基金面上项目2项和科技部重点研发计划1项。代表性工作之一是(与人合作)解决了1975年的Woodall猜想,该猜想曾被JCTB前主编J.A.Bondy做为图论领域的50个未解决问题之一(问题7)收录在经典图论教科书《Graph Theory with Applications》的附录中。

 

欢迎老师与同学参加!