科研动态
当前位置: 首页 > 正文

Extremal nonsolid bricks

发布日期:2021年05月14日 18:20 作者:林丽双 访问量:


报告人:卢福良 (闽南师范大学 教授)

报告时间:2021520(周四)下午16:00

报告地点:章辉442

联系人:林丽双 教授

欢迎广大师生参加!

 

报告摘要: A 3-connected graph is a brick if, after the removal of any two vertices, the resulting graph has a perfect matching. Lovasz (J. Combin. Theory (B) 43 (1987), 187-222.) proved that the dimension dim(G) of the matching lattice of a brick G is equal to |E(G)|-|V(G)|+1. We say a brick G is extremal if the number of perfect matchings in G is exactly dim(G). De Carvalho, Lucchesi and Murty (J. Graph Theory, 48 (2005), 19-50) characterized the extremal graphs and conjectured that every nonsolid extremal brick other than the Petersen graph is the result of the splicing of an extremal brick and a K_4, up to multiple edges . In this talk, we present an infinite family of graphs showing that this conjecture fails.

 

报告人简介:卢福良,福建省闽江特聘教授。主要从事图的匹配理论研究,在SIAM J. Discrete Math. Journal of Graph Theory Electron. J. Comb.Discrete Mathematics等国内外主要期刊发表论文30余篇。

理学院

2021512