科研动态

您的当前位置: 学院首页 >> 科学研究 >> 科研动态 >> 正文
学术报告:Rooted quasi-Stirling multipermutations
发布时间:2021-10-13      点击次数:

学术报告:Rooted quasi-Stirling multipermutations

报告题目:Rooted quasi-Stirling multipermutations

报告人:傅士硕 (重庆大学副教授)

报告时间:20211017(周日)上午9:00

报告地点:腾讯会议ID628 110 352

联系人:林丽双 教授

欢迎广大师生参加!


报告摘要:Given a general multiset M, where i appears mi times, a multipermutation of M called “quasi-Stirling”, if it contains no subword of the form abab with ab. In this talk, we introduce certain vertex and edge labeled trees and give a new bijective proof of an identity due to Yan, Yang, Huang and Zhu. This identity and our bijective approach to proving it enables us to

1) prove bijectively a Carlitz type identity involving quasi-Stirling polynomials on multisets that was first obtained by Yan and Zhu.

2) confirm a recent partial gamma-positivity conjecture due to Lin, Ma and Zhang, and find a combinatorial interpretation of the gamma-coeffici- ents. The talk is based on joint work with Yanlin Li.


报告人简介:傅士硕,2011年博士毕业于宾夕法尼亚州立大学,2011-2012在韩国科学技术院(KAIST)做博士后研究,现任职重庆大学“百人计划”特聘研究员。研究兴趣主要为组合数学中的整数分拆理论、排列统计量同分布问题等。已在J. Combin. Theory Ser. A, Adv. Appl. Math., European J. Combin., Ramanujan J. 等杂志发表论文20余篇,多次受邀参加国际国内学术会议并作邀请报告,获批国家自然科学基金两项。现任中国工业与应用数学学会图论组合及应用专业委员会副秘书长、中国运筹学会图论组合学分会理事。

理学院

20211013

学术报告:Rooted quasi-Stirling multipermutations

报告题目:Rooted quasi-Stirling multipermutations

报告人:傅士硕 (重庆大学副教授)

报告时间:20211017(周日)上午9:00

报告地点:腾讯会议ID628 110 352

联系人:林丽双 教授

欢迎广大师生参加!


报告摘要:Given a general multiset M, where i appears mi times, a multipermutation of M called “quasi-Stirling”, if it contains no subword of the form abab with ab. In this talk, we introduce certain vertex and edge labeled trees and give a new bijective proof of an identity due to Yan, Yang, Huang and Zhu. This identity and our bijective approach to proving it enables us to

1) prove bijectively a Carlitz type identity involving quasi-Stirling polynomials on multisets that was first obtained by Yan and Zhu.

2) confirm a recent partial gamma-positivity conjecture due to Lin, Ma and Zhang, and find a combinatorial interpretation of the gamma-coeffici- ents. The talk is based on joint work with Yanlin Li.


报告人简介:傅士硕,2011年博士毕业于宾夕法尼亚州立大学,2011-2012在韩国科学技术院(KAIST)做博士后研究,现任职重庆大学“百人计划”特聘研究员。研究兴趣主要为组合数学中的整数分拆理论、排列统计量同分布问题等。已在J. Combin. Theory Ser. A, Adv. Appl. Math., European J. Combin., Ramanujan J. 等杂志发表论文20余篇,多次受邀参加国际国内学术会议并作邀请报告,获批国家自然科学基金两项。现任中国工业与应用数学学会图论组合及应用专业委员会副秘书长、中国运筹学会图论组合学分会理事。

理学院

20211013


版权所有 © 集美大学理学院 地址:厦门市集美区银江路183号(校总部) 邮编:361021