学术交流

您的当前位置: 学院首页 >> 科学研究 >> 学术交流 >> 正文
学术报告(2025年第62期): Hilbert's fourth problem in the constant curvature setting
发布时间:2025-11-21      点击次数:

报告人:李本伶(宁波大学 教授)

报告时间:2025年11月23日上午 08:30-09:15

报告地点:厦门杏林湾大酒店 203会议室

联系人:李锦玲

欢迎广大师生参加!


报告摘要: Hilbert's fourth problem concerns the classification of metric geometries in which straight lines are shortest paths. In the projectively flat Finsler setting with constant flag curvature, the global structure has remained an open and challenging topic.

In this talk, we present some recent advances toward a global understanding. We derive explicit distance formulas, obtain a classification in the non-positive curvature case, and show that in positive curvature the completion must be a sphere. We also describe an unexpected connection with the nonlinearity of Sobolev spaces, along with several new examples of exotic metrics defined on evolving domains.

These results contribute to a more unified picture of the global geometry in this classical setting. This is joint work with Wei Zhao.

报告人简介:李本伶,浙江宁波人,2007年毕业于浙江大学数学系,获理学博士学位。现任宁波大学数学与统计学院教授,宁波市数学会副理事长。研究领域为微分几何,主要从事Finsler几何和spray几何的研究,在Adv. Math, Comm. Anal. Geom., Sci. China Math., Diff.Geom.Appl.等期刊上发表多篇论文。主持完成国家自然科学基金项目、浙江省自然科学基金杰出青年项目等多项课题。

版权所有 © 集美大学理学院 地址:厦门市集美区银江路183号(校总部) 邮编:361021