报告人: 李佳傲(南开大学副教授、博导)
报告时间:12月14日上午10:00
腾讯会议ID:774-354-885
联系人:徐丽琼教授
欢迎广大师生参加!
报告摘要:A signed graph is a graph in which each edge receives a positive or a negative sign. In a signed graph, a sign circuit is either a balanced circuit or a barbell. A signed graph is called flow-admissible if each edge lies in a sign circuit. In this talk, we shall discuss circuit k-cover and shortest circuit cover problems of signed graphs. We show that every flow-admissible signed graph with m edges can be covered by some sign-circuits whose total length is at most 32m/13<2.47m. We will talk about some proof techniques of this result, including some reduction tricks and some flow cover/decomposition lemmas. This connects the flow theory and circuit cover theory in signed graphs.
报告人简介:李佳傲,南开大学副教授、博士生导师。2012年和2014年在中国科学技术大学获得本科和硕士学位,导师为徐俊明教授和侯新民教授;2018年博士毕业于美国西弗吉尼亚大学,导师为赖虹建教授。主要研究兴趣是离散数学与组合图论,包括Tutte整数流理论,图的染色,图结构与分解,加性组合,网络与组合优化等问题,研究成果发表在JCTB,SIDMA,JGT、EJC等杂志。2020年入选天津市青年人才托举工程,2021年入选南开大学百名青年学科带头人培养计划,2022年获国家自然科学基金优秀青年科学基金项目资助。