报告人:王清 (厦门大学 教授)
报告时间:2024年12月14日(周六)14:30
报告地点:章辉442
联系人:陈海波 副教授
欢迎广大师生参加!
报告摘要:We present our recent results on affine vertex operator superalgebra $L_{\widehat{osp(1|2)}}(l,0)$ at admissible level $l$. We prove that the category of weak $L_{\widehat{osp(1|2)}}(l,0)$-modules on which the positive part of $\widehat{osp(1|2)}$ acts locally nilpotently is semisimple. Then we prove that Q-graded vertex operator superalgebras $(L_{\widehat{osp(1|2)}}(l,0),\omega_\xi)$ with a new Virasoro element $\omega_\xi$ are rational and the irreducible modules are exactly the admissible modules for $\widehat{osp(1|2)}$, where $0<\xi<1$ is a rational number. Furthermore, we determine the Zhu's algebras $A(L_{\widehat{osp(1|2)}}(l,0))$ and their bimodules $A(L(l,j))$ for $(L_{\widehat{osp(1|2)}}(l,0),\omega_\xi)$, where $j$ is the admissible weight. As an application, we calculate the fusion rules among the irreducible ordinary modules of $(L_{\widehat{osp(1|2)}}(l,0),\omega_\xi)$. This is a joint work with Huaimin Li.
报告人简介:王清,厦门大学数学科学学院教授,博士生导师,国家级青年人才项目入选者。主要从事无穷维李代数和顶点算子代数方向的研究,在无穷维李代数和顶点算子代数的表示方面取得了一系列创新性的研究成果,发表在Adv. Math., Comm. Math. Phys., Israel J. Math., J. Algebra等期刊。目前主持国家自然科学基金国际(地区)合作与交流项目和国家自然科学基金面上项目等项目多项。