科研动态

您的当前位置: 学院首页 >> 科学研究 >> 科研动态 >> 正文
学术报告:Zero Uncertainty States in the Presence of Quantum Memory
发布时间:2022-05-19      点击次数:

 

 

报告人:朱黄俊 (复旦大学研究员)

报告时间:2022年5月20日(周五)下午14:00

报告地点:腾讯会议号:771 547 846

联系人:陈芝花教授

欢迎广大师生参加!


报告摘要:The uncertainty principle imposes a fundamental limit on predicting the measurement outcomes of incompatible observables even if complete classical information of the system state is known. The situation is different if one can build a quantum memory entangled with the system. Zero uncertainty states (in contrast with minimum uncertainty states) are peculiar quantum states that can eliminate uncertainties of incompatible von Neumann observables once assisted by suitable measurements on the memory. Here we determine all zero uncertainty states of any given set of nondegenerate observables and determine the minimum entanglement required. It turns out all zero uncertainty states are maximally entangled in a generic case, and vice versa, even if these observables are only weakly incompatible. Our work establishes a simple and precise connection between zero uncertainty and maximum entanglement, which is of interest to foundational studies and practical applications, including quantum certification and verification. Reference: npj Quantum Information (2021) 7:47 ;https://doi.org/10.1038/s41534-021-00384-4


报告人简介:朱黄俊,先后在浙江大学物理系,北京大学物理学院,和新加坡国立大学量子技术中心获学士,硕士,和博士学位。之后在加拿大圆周理论物理研究所和德国科隆大学理论物理研究所从事博士后研究。2018年1月至今在复旦大学物理学系任研究员。主要研究领域为量子信息基础理论,包括量子测量,量子层析,量子验证,纠缠理论,和离散对称结构等。以第一或通讯作者在国际知名期刊发表论文近50篇,包括PRL 7篇,Nat. Commun. 1篇,和npj Quantum Inf. 3篇。

 

版权所有 © 集美大学理学院 地址:厦门市集美区银江路183号(校总部) 邮编:361021