报告人:马杰 (中国科学技术大学、清华大学 教授)
报告时间:2025年12月12日(周五)上午9:30
报告地点:章辉楼442
联系人:冯星
欢迎广大师生参加!
报告摘要:We prove that any two longest cycles (or paths) in a k-connected graph must intersect in at least c k^{2/3} vertices for some absolute constant c>0. This improves earlier bounds established by Chen–Faudree–Gould and Groenland–Longbrake–Steiner–Turcotte–Yepremyan. We also prove that the size of the intersection of any two longest cycles in every vertex-transitive graph on n vertices tends to infinity as n tends to infinity. This partially answers a question of Babai. Joint work with Ziyuan Zhao (USTC).
马杰,中国科学技术大学教授、清华大学教授,从事组合图论领域的研究工作及其在理论计算机和信息科学中的应用,在极值组合、结构图论和概率组合等领域分支取得了系列理论创新成果。曾获海外高层次人才引进计划青年项目、基金委优秀青年科学基金项目、基金委国家杰出青年科学基金项目,担任科技部国家重点研发计划项目负责人、基金委数学天元基金学术领导小组成员、JCTB和SIDMA等杂志编委。