报告人:卢福良 (闽南师范大学 教授)
报告时间:2023年3月12日(周日)下午15:00
报告地点:集美大学理学院442报告厅
联系人:组合图论研究团队
欢迎广大师生参加!
报告摘要:A 3-connected graph is a {\em brick} if, for any two vertices $u$ and $v$, $G-u-v$ has a perfect matching. A brick $G$ is {\em minimal} if $G-e$ is not a brick for every edge $e$ of $G$. Norine and Thomas [{\em J. Combin. Theory Ser. B}, 96(4) (2006), pp. 505-513.] conjectured that there exists $\alpha >0$ such that every minimal brick $G$ contains at least $\alpha |V(G)|$ cubic vertices. A brick is {\em solid} if for any two disjoint odd cycles $C_1$ and $C_2$, $G-V(C_1\cup C_2)$ has no perfect matching. In this talk, we will show that the above conjecture holds for solid bricks.
报告人简介:卢福良,福建省闽江学者特聘教授。2011年博士毕业于厦门大学,曾入选福建省百千万人才工程。主要研究图的匹配理论及相关问题。在J. Combin. Theory Ser. B,SIAM J. Discrete Math., Journal of Graph Theory,Electron. J. Comb.,Discrete Math.等杂志发表论文30余篇。
理学院
2023年3月9日