报告人:韩青 (美国圣母大学教授)
报告时间:2024年6月 5日(周三)上午10:00
报告地点:章辉楼442
联系人:蓝永艺 副教授
欢迎广大师生参加!
报告摘要:Harmonic functions form an important class of functions in analysis. From the point of view of partial differential equations (PDEs), harmonic functions are solutions of the simplest linear elliptic equations. They have been studied intensively for centuries. In this talk, we will discuss global and local properties of harmonic functions. The Liouville Theorem asserts that any bounded harmonic functions in the entire space are constant. This result was generalized to many important geometric PDEs. In 1980s, Almgren introduced the concept of frequencies, which plays an important role in the study of local properties of harmonic functions, such as the vanishing order and the size of the nodal sets.
报告人简介:韩青,美国圣母大学数学系终身教授。美国纽约大学库朗数学研究所博士,美国芝加哥大学博士后。获美国Sloan Research Fellowship. 韩青教授长期致力于非线性偏微分方程和几何分析的研究,在等距嵌入、Monge-Ampere方程、调和函数的零点集和奇异集、退化方程等方面做出了一系列原创性的重要研究成果。
理学院
2024年6月2日