学术交流

您的当前位置: 学院首页 >> 科学研究 >> 学术交流 >> 正文
学术报告(2024年第64期): Breather and rogue wave solutions on the elliptic function background for the Hirota equation
发布时间:2024-11-18      点击次数:

报告人:樊方成(闽南师范大学 副教授)

报告时间:2024年11月23日(周六)下午 16:00

报告地点: 集美大学章辉楼442

联系人: 王海峰副教授

欢迎广大师生参加!


报告摘要

In the report, we construct breather and rogue wave solutions on the elliptic function background for the Hirota equation by using the Darboux transformation. Firstly, we give solutions of the Lax pair associated with the elliptic function seed solutions. In this process, different from the approach of employing the nonlinearization of the Lax pair or the traveling wave transformation used before, we mainly combine the proper assumption with the method of separation of variables. This strategy is more direct and simpler and can be extended to other nonlinear integrable equations.

Secondly, we derive the Kuznetsov-Ma breather and the spatiotemporally periodic breather on the elliptic function

background for the Hirota equation, which are reported for the first time. The corresponding dynamical properties and evolution states are illustrated graphically. Finally, at branch points for breathers, the rogue waves on the elliptic function background are constructed and their characteristics are discussed and analyzed. For breather and rogue wave solutions, we both investigate the parameters α and β how to impact the dynamical behaviors of the solutions. All the

results in this paper might be helpful for understanding the dynamical behaviors of breathers and rogue waves on the elliptic function background.

报告人简介: 樊方成,博士,副教授,硕师生导师。研究方向:可积系统及其应用。主持国家自然科学基金青年项目1项和福建省自然科学基金面上项目1项,已在国内外重要学术期刊上发表论文20余篇。

版权所有 © 集美大学理学院 地址:厦门市集美区银江路183号(校总部) 邮编:361021