报告人:黄世龙(山东科技大学 博士)
报告时间:2024年11月24日(周天)上午 9:30
报告地点: 集美大学章辉楼442
联系人:王海峰副教授
欢迎广大师生参加!
报告摘要:
We give a classification of the regular soliton solutions of the KP hierarchy, referred to as the KP solitons, under the Gel’fand-Dickey L-reductions in terms of the permutation of the symmetric group. As an example, we show that the regular soliton solutions of the (good) Boussinesq equation as the 3-reduction can have at most one resonant soliton in addition to two sets of solitons propagating in opposite directions. We also give a systematic construction of these soliton solutions for the L-reductions using the vertex operator. In particular, we show that the non-crossing permutation gives the regularity condition for the soliton solutions.
报告人简介:黄世龙,广东佛山人,中共党员,华侨大学硕士,山东科技大学在读博士。研究方向为可积系统中的Gel’fand-Dickey约化下的KP孤子以及顶点算子的构造。现阶段,主要在李传忠教授和Yuji Kodama教授的指导下利用非交叉置换来构造Gel’fand-Dickey约化下正则孤子解。