报告人:李传忠(山东科技大学 教授)
报告时间:2025年11月16日(周天)下午14:30-18:00
报告地点:章辉楼450
联系人:王海峰副教授
欢迎广大师生参加!
报告摘要:
In this talk, we will review our studies on Young diagrams in representation theory related to integrable systems.
1. The Young diagrams connect with permutation group, chord diagram, pipedream, Le-diagrams which all connect with soliton graphs of KP systems. In this direction, we considered the combinatorics inside the line-soliton solutions of KP type systems like Gelfand-Dickey systems (CMP, 2025).
2. The symbol of Young diagrams is used to describe the Springer correspondence for the classical groups by Lusztig. We refine the explanation that the S-duality maps of the rigid surface operators which correspond the solutions of Hitchin integrable systems. We clear up cause of the mismatch problem of the total number of the rigid surface operators between the B type and C type Lie algebraic theories. And we construct all the B/C rigid surface operators which can not have a dual. We made the classification of the problematic surface operators (CMP, 2024). Also we proved the open conjecture that the symbol invariant of Young diagrams is equivalent to the fingerprint invariant of Young diagrams for the rigid surface operators (arXiv:1711.10356)
专家介绍:李传忠,山东科技大学教授、博士生导师、山东省泰山学者。2011年博士毕业于中国科学技术大学数学学院,美国俄亥俄州立大学联合培养博士。现担任中国高等教育学会教育数学专业委员会理事,山东省大数据研究会理事,SCI期刊Mathematics编委。主要从事数学物理方向的研究工作。2015 年入选宁波市领军和拔尖人才培养工程。2020年入选山东省泰山学者青年专家。主持国家自然科学基金面上项目2项和青年基金项目1项。以第一作者或唯一通讯作者身份在Commun. Math. Phys., Phys. Lett. B, J Nonl. Sci., Nuc. Phys. B, Lett. Math. Phys., Stud. Appl. Math., J. Alg. Comb., Phys. D, Phys. Rev. E, J. Phys. A, J. Math. Phys, J. Geom. Phys.等期刊发表 SCI论文100余篇。